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ABSTRACT: Silicon hydrides, alkynylsilanes, and alkoxylsilanes
were activated by fluoride in the presence of bisguanidinium catalyst
to form hypervalent silicate ion pairs. These activated silicates
undergo 1,4-additions with chromones, coumarins, and α-cyanocin-
namic esters generating enolsilicate intermediates, for a consequent
stereoselective alkylation reaction. The reduction-alkylation reaction
proceeded under mild conditions using polymethylhydrosiloxane, a
cheap and environmentally friendly hydride source. The addition-
alkylation reactions with alkynylsilanes and alkoxylsilanes resulted in the construction of two vicinal chiral carbon centers with
excellent enantioselectivities and diastereoselectivities (up to 99% ee, >99:1 dr). Density functional theory calculations and
experimental NMR studies revealed that penta-coordinated silicates are crucial intermediates.

■ INTRODUCTION

Penta- and hexacoordinated hypervalent silicates are known to
be crucial intermediates in chiral Lewis base catalyzed
stereoselective reactions.1 Neutral organosilanes are also
known to be activated by fluoride for the reduction of
carbonyl compounds.2a−c In 1997, Kagan and co-worker
reported the use of a monolithium salt of (R)-binaphthol as
an activator of trimethoxysilane for the reduction of ketones.2d

N-Formylproline derivatives2e and dilithium salt of histidine2f

were reported as promoters as well. In addition, enantiose-
lective reduction of imines2g,h as well as phosphine-catalyzed
conjugate reduction of α,β-unsaturated ketones or β-enamino
esters using trichlorosilane as the hydride source were also
reported (Figure 1a).3a−f As silyl enol ethers were formed
during the reduction of α,β-unsaturated ketones, enantiose-
lective tandem reduction-aldol reaction have been developed
(Figure 1a).3c,4a,b Despite such advances and the tremendous
amount of chemistry relating to silyl enol ether, the generation
of this useful intermediate by reduction with hydrides and
further reaction have not been fully explored.
Phase transfer and ion-pairing catalysis, in which chiral

cations work synergistically with anions, were reported for
many enantioselective transformations.5 We have previously
reported enantioselective reactions using dicationic bisguani-
dinium BG (Table 1) to direct various metal-centered anions.6

We have also proposed bisguanidinium hypervalent silicates as
key intermediates in enantioselective alkylations using
silyamides (Figure 1b)6d and enantioselective 1,2-anionotropic
rearrangement of acylsilanes (Figure 1c).6e

In this report, we demonstrate that silicon hydride can be
activated with fluoride in the presence of bisguanidinium BG

catalyst to form a hypervalent hydridosilicate ion pair (Figure
1d). This is followed by an enantioselective conjugate
reduction of chromones, coumarins, or α-cyanocinnamic esters
to generate a hypervalent enolsilicate intermediate, followed by
a stereoselective alkylation reaction. Similarly, alkynylsilanes
and alkoxylsilanes can also lead to the formation of hypervalent
alkynylsilicate and alkoxylsilicate ion pairs. The addition-
alkylation with alkynylsilanes and alkoxylsilanes resulted in the
construction of two vicinal chiral carbon centers with excellent
enantioselectivities and diastereoselectivities.

■ RESULTS AND DISCUSSION
Enantioselective Reduction-Alkylation of Chro-

mones. Asymmetric phase-transfer alkylation of β-keto esters
is an attractive approach to obtain chiral quaternary carbon
centers. Because of its low pKa, it is difficult to avoid
background reactions.7 A tandem reduction-alkylation is a
useful strategy to circumvent this difficulty. Conjugate
reduction-alkylation of α,β-unsaturated aldehydes with alco-
hols was reported using chiral secondary amines through
enamine, iminium, and acid pathways.8a Another reduction-
alkylation route through Cu-catalyzed conjugate reduction and
Pd-catalyzed arylation led to α-arylated cycloalkanones.8b

Using 4-oxochroman-3- carbonitrile 1a as a model, we
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investigated our approach with a variety of silanes (Table 1,
entries 1−10).
We found that both trisubstituted arylsilane and trisub-

stituted trialkoxylsilane furnished good yields and enantiose-
lectivities (entries 3 and 7). We were delighted to find that
polymethylhydrosiloxane (PMHS), which is an attractive
reagent because of its low price, stability against air and

moisture, and easy handling,2c can also provide the reduced
chromone 2a with excellent results (entries 11 and 12). With
suitable conditions in hand, we next investigated the substrate
scope of the reduction-alkylation using different chromones
1a−1d (Scheme 1). Benzyl bromides, bearing both electron-

withdrawing and electron-donating groups, delivered the
desired products 2b−2h in good yields and excellent
enantioselectivities. We further examined different electro-
philes 2i−2s and found that different activated bromides,
including allylic-, propargylic-, and ester-substituted ones gave
good results. Different chromones were also investigated and
good yields and excellent enantioselectivities were obtained:
2t−2v. Remarkably, changing the aryl group to a naphthalene
ring also provided reduced chromone 2v with satisfactory
results.

Enantioselective Reduction-Alkylation of Coumarins.
Dihydrocoumarin compounds have attracted much attention
because of their desirable biological activities. Generation of an
α-quaternary carbon center of hydrocoumarins is nontrivial
and there are few known examples of catalytic enantioselective
synthesis.9a−d,6d Using similar conditions developed previously
(Scheme 1), we found that coumarins 3a−3d underwent
reduction-alkylation smoothly with various bromides to give
the corresponding products with good yields and excellent
enantioselectivities (Scheme 2).
We found that it was necessary to change the fluoride source

from cesium fluoride to potassium fluoride for the
enantioselectivities to be satisfactory (Scheme 2, 4a). Residual
moisture in the salts was unlikely the cause for the difference
since they were both dried rigorously. In fact, the addition of 1
equiv of water only moderately affected the yield and
enantioselectivity of the reaction.

Enantioselective Addition-Alkylation Using Alkynyl-
silanes and Alkoxylsilanes. With the success of reduction-

Figure 1. Stereoselective reactions with hypervalent silicate as
intermediates.

Table 1. Optimization of Reaction Conditionsa

entry [SiH] yieldb eec

1 PhSiH3 24 75
2 PhMeSiH2 30 78
3 Ph3SiH 75 76
4 Ph2MeSiH 68 90
5 PhMe2SiH 41 96
6 Et3SiH 10 97
7 (MeO)3SiH 77 89
8 (EtO)3SiH 60 60
9 (EtO)2MeSiH 50 67
10 (EtO)Me2SiH trace
11 PMHS 76 90
12d PMHS 84 98

aReaction was conducted with 1a (0.1 mmol, 1.0 equiv), BnBr (0.4
mmol, 4.0 equiv) in 0.5 mL of tert-butyl methyl ether (TBME) in the
presence of 10 mol % BG at 0 °C for 48 h. bIsolated yields.
cDetermined by HPLC analysis on a chiral stationary phase.
dCyclopentyl methyl ether (CPME) was used as solvent.

Scheme 1. Reduction-Alkylation of Chromonesa,b,c

aReaction was carried out with 1a−1d (0.1 mmol), electrophile (0.4
mmol), PMHS (0.4 mmol), CsF (0.4 mmol), and catalyst BG (10
mol %) in 0.5 mL of CPME at 0 °C for 48 h. bUnless otherwise
noted, yields are isolated yields. cee was determined by HPLC analysis
on a chiral stationary phase. dAbsolute configuration was determined
by X-ray analysis.
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alkylation, we then investigated if other functional groups can
be added in place of hydride.10a,b We tested alkynylsilanes and
found that the addition-alkylation proceeded well for
chromones 1a and 1b, and following alkylation, two vicinal
chiral carbon centers were constructed with excellent
enantioselectivities and diastereoselectivities (Scheme 3).
However, because of the lower reactivity of alkynylsilanes,

only moderate yields were obtained. Terminal alkynylsilane

also worked well with decent results for alkynylchromone 5a
(73% yield, 97% ee, >99:1 dr). Cinnamyl bromide was also
able to furnish alkynylchromones (5e−5g) with good results.
Alkyoxylsilanes, on the other hand, reacted smoothly with

high reactivities and high yields were achieved (Scheme 4).

The transfer of the alkyoxyl group from alkoxylsilanes11a−c also
resulted in the construction of two vicinal chiral carbon centers
with high yields, good enantioselectivities, and excellent
diastereoselectivities for chromones 6a−6h. Changing trime-
thoxylsilane to triethoxylsilane did not affect the profile of the
alkoxylated chromones 6a and 6d significantly.

Enantioselective Reduction-Alkylation of α-Cyano-
cinnamic Esters. The scope of our reduction-alkylation
reaction was further extended to include linear substrate such
as α-cyanocinnamic esters (Scheme 5).12a,b These esters, 7a−
7d, furnished enantioenriched reduction-alkylation adducts

Scheme 2. Reduction-Alkylation of Coumarinsa,b,c

aReaction was carried out with 3a−3d (0.1 mmol), electrophile (0.4
mmol), PMHS (0.4 mmol), KF (0.40 mmol), and catalyst BG (10
mol %) in 0.5 mL of TBME at 0 °C for 48 h. bUnless otherwise
noted, yields are isolated yields. cee was determined by HPLC analysis
on a chiral stationary phase. dUsing CsF as the fluoride source.
eReaction was carried out with 3 (0.1 mmol), electrophile (0.3
mmol), PMHS (0.3 mmol), KF (0.3 mmol), and catalyst BG (10 mol
%) in 0.5 mL of iPr2O at 0 °C for 48 h. fAbsolute configuration was
determined by X-ray analysis.

Scheme 3. Addition-Alkylation of Chromones Using
Alkynylsilanesa,b,c

aThe reaction was carried out with 1a and 1b (0.1 mmol),
electrophile (0.4 mmol), (trimethylsilyl)ethynyl compound (0.4
mmol), CsF (0.4 mol), and catalyst BG (10 mol %) in 0.5 mL of
Et2O at 0 °C for 72 h. bUnless otherwise noted, yields are isolated
total yields. cee was determined by HPLC analysis on a chiral
stationary phase. dAbsolute configuration was determined by X-ray
analysis.

Scheme 4. Addition-Alkylation of Chromones Using
Alkoxylsilanesa,b,c

aReaction was carried out with 1a and 1b or 1d (0.1 mmol),
electrophile (0.4 mmol), trialkyloxy(phenyl)silane (0.4 mmol), CsF
(0.4 mol), and catalyst BG (10 mol %) in 0.5 mL of CPME at 0 °C
for 48 h. bUnless otherwise noted, yields are isolated total yields. cee
was determined by HPLC analysis on a chiral stationary phase.
dAbsolute configuration was determined by X-ray analysis. eUsing
iPr2O as solvent.

Scheme 5. Reduction-Alkylation of α-Cyanocinnamic
Estersa,b,c

aReaction was carried out with 7a−7d (0.05 mmol), electrophile (0.2
mmol), PMHS (0.2 mmol), CsF (0.2 mol), N,N-diisopropylethyl-
amine (DIPEA) (0.1 mmol), and catalyst BG (20 mol %) in 1.0 mL
of Et2O at −10 °C for 72 h. bUnless otherwise noted, yields are
isolated total yields. cee was determined by HPLC analysis on a chiral
stationary phase. dUsing nBu2O as solvent. eAbsolute configuration
determination was determined using free acid of 8e (Supporting
Information, p S37).
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8a−8f containing a highly functionalized quaternary carbon
center, which is important for the preparation of biologically
active compounds.13 Remarkably, a thiophene-containing
acrylate was able to add to cinnamyl bromide without affecting
both the yield and the enantioselectivity (8d 74% yield, 84%
ee). The addition of amine such as DIPEA accelerated the
reaction, allowing the reaction temperature to be lowered
without impacting the enantioselectivity of the adducts (see
the Supporting Information, pp S6−S8, for more information).
At this moment, we are unsure of the role played by these
additives.
Identification of Reaction Intermediates. In 2007,

McGrady and Steed reported the hypervalent silicate
complexes of [K([18]crown-6)]+ salt with [Ph3SiF2]

− and
[(p-FC6H4)3Si(F)H]

−, which were characterized by NMR
spectroscopy and X-ray diffraction.14 We attempted but were
unable to obtain any suitable crystals for X-ray studies. We thus
decided to study the hypervalent silicate species using 19F
NMR. According to known data (see the Supporting
Information, p S6, for more details), changing the counterion
does not influence the 19F NMR chemical shifts of the
hypervalent silicates significantly. Hence, the 19F NMR
chemical shifts of ammonium silicates can be used to predict
the chemical shifts of the bisguanidinium silicate intermediates.
We first use 19F NMR to study the hypervalent silicates

generated using tetrabutylammonium fluoride (TBAF) (see
the Supporting Information, pp S9−S14, for more details).
Density functional theory calculations using the gauge
independent atomic orbital method were performed to predict
the 19F NMR shifts of possible intermediates produced for
comparison with the experimental data (see the Supporting
Information, pp S17−S31, for more details). We started with a
training set consisting of ten fluorinated molecules and
improved it by subsequent addition of experimental results.
The geometries of the electronic structures for configurational
isomers of each compound were also taken into consideration.
The 19F NMR spectrum of a mixture of TBAF and Ph3SiH
showed one new peak at δ −98.3 ppm (Table 2), which is

fairly consistent with our calculated NMR shift for
TBA+[Ph3SiFH]

− (δ −95.5 ppm). The mixture of TBAF and
alkynylsilanes showed messy signals in the 19F NMR spectrum;
hence, calculations were not done. The mixture of TBAF and
PhSi(OMe)3 showed one new peak at δ −115.7 ppm, which is
consistent with our calculated NMR shift for TBA+[PhSi-
(OMe)3F]

− (δ −113.1 ppm). In addition, the 1H NMR
spectrum of the mixture of TBAF and Ph3SiH in deuterated
chloroform showed a peak at δ 5.57 ppm, which is consistent
with our calculated NMR shift for Si−H in TBA+[Ph3SiFH]

−

(δ 5.90 ppm). Using these data, we were able to propose that
the crucial intermediates observed in the experiments using

bisguanidinium BG are pentacoordinated hypervalent silicate
ion pairs.
We wanted to “catch” the bisguanidinium hypervalent

silicate intermediates “in the act”. First, we changed the
sequence of the addition of reagents (cf. Table 1); we generate
the hypervalent silicate through the addition of the fluoride
source to Ph3SiH or PhSi(OMe)3 at the onset of the
experiments (Scheme 6); this is followed by chromone 1a

and, last, benzyl bromide. Following the addition of the
fluoride source to Ph3SiH, the experiments can be interrupted
and 19F NMR measured (Scheme 6a,b). In both experiments,
using TBAF and [BG][F][X], 19F NMR observed the
pentacoordinated hypervalent silicate described above (Table
2). When the experiments were resumed, reduced chromone
3a was obtained in moderate yields with good enantioselec-
tivity observed only in the experiment using [BG][F][X] (see
the Supporting Information, p S6, for the preparation method).
Similarly, when the fluoride source was added to PhSi(OMe)3,
the experiments can be interrupted and 19F NMR measured
(Scheme 6c,d). As before, only in the experiment using [BG]
[F][X] gave chromone 6a with enantioselectivity. Using a
combination of DFT calculation and experimental results, we
also proposed that the apical positions in BG+[PhSi-
(OMe)3F]

−[X]− are occupied by the Ph and F groups
(Scheme 6d).

■ CONCLUSIONS
We have developed bisguanidinium BG-catalyzed enantiose-
lective reduction-alkylation and addition-alkylation reactions.
Silicon hydrides, alkynylsilanes, and alkoxylsilanes were

Table 2. Experimental and DFT Predicted 19F NMR of
Hypervalent Silicatesa

hypervalent silicates
experimental 19F
NMR (ppm)

DFT predicted 19F
NMR (ppm)

TBA+ [Ph3SiFH]
− −98.3 −95.5

BG2+ [Ph3SiFH]
−[X]− −97.0

TBA+[PhSi(OMe)3F]
− −115.7 −113.1

BG2+[PhSi(OMe)3F]
−[X]− −120.1

aX = F, Cl, or hypervalent silicate.

Scheme 6. Identification of Hypervalent Silicate
Intermediates
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activated with fluoride in the presence of bisguanidinium BG
catalyst to form hypervalent silicate ion pairs. These activated
silicates then underwent 1,4-additions to chromones, coumar-
ins, and α-cyanocinnamic esters, generating enolsilicate
intermediates, followed by stereoselective alkylation. The
reductive-alkylation reaction proceeded under mild conditions
with polymethylhydrosiloxane, a cheap and environmentally
friendly hydride source. The addition-alkylation reactions with
alkynylsilanes and alkoxylsilanes resulted in the construction of
two vicinal chiral carbon centers with excellent enantioselec-
tivities and diasteroselectivities. DFT calculations and exper-
imental NMR studies revealed that pentacoordinated silicates
are crucial intermediates.
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